What is the purpose of Vocational Education and Training?

Photo by Jeswin Thomas on Unsplash

Is Artificial Intelligence challenging us to rethink the purpose of Vocational Education and Training? Perhaps that is going too far, but there are signs of questions being asked. For the last twenty five years or so there has been a tendency in most European countries for a narrowing of the aims of VET, driven by an agenda of employability. Workers have become responsible for their own employability under the slogan of Lifelong Learning. Learning to learn has become a core skill for students and apprentices, not to broaden their education but rather to be prepared to update their skills and knowledge to safeguard their employability.

It wasn’t always so. The American philosopher, psychologist, and educational reformer John Dewey believed “the purpose of education should not revolve around the acquisition of a pre-determined set of skills, but rather the realization of one's full potential and the ability to use those skills for the greater good.” The overriding theme of Dewey's work was his profound belief in democracy, be it in politics, education, or communication and journalism and he considered participation, not representation, the essence of democracy.

Faced with the challenge of generative AI, not only to the agency and motivation of learners, but to how knowledge is developed and shared within society, there is a growing understanding that a broader approach to curriculum and learning in Vocational Education and Training is necessary. This includes a more advanced definition of digital literacy to develop a critique of the outputs from Large Language Models. AI literacy is defined as the knowledge and skills necessary to understand, critically evaluate, and effectively use AI technologies (Long & Magerko, 2020) including understanding the capabilities and limitations of AI systems, recognising potential biases and ethical implications of AI-generated content  and developing critical thinking skills to evaluate AI-produced information .

UNESCO says their citizenship education, including the competence frameworks for teachers and for students, builds on peace and human rights principles, cultivating essential skills and values for responsible global citizens. It fosters criticality, creativity, and innovation, promoting a shared sense of humanity and commitment to peace, human rights, and sustainable development. Fenchung Miao from UNESCO has said the AI competency framework for students proposed the term of "AI society citizenship" and provided interpretation in multiple sections. Section 1.3 of the Framework, AI Society Citizenship says:

Students are expected to be able to build critical views on the impact of AI on human societies and expand their human centred values to promoting the design and use of AI for inclusive and sustainable development. They should be able to solidify their civic values and the sense of social responsibility as a citizen in an AI society. Students are also expected to be able to reinforce their open minded attitude and lifelong curiosity about learning and using AI to support self actualisation in the AI era.

The Council of Europe says Vocational Education and Training is an integral part of the entire educational system and shares its broader aim of preparing learners not only for employment, but also for life as active citizens in democratic societies. Social dialogue and corporate social responsibility are seen as tools for democratising AI in work.

Renewing the democratic and civic mission of education underlines the importance of integrating Competences for Democratic Culture (CDC) in VET to promote quality citizenship education. This initiative aims to support VET systems in preparing learners not only for employment but also for active participation as citizens in culturally diverse democratic societies. By embedding CDC in learning processes in VET, the Council of Europe aims to ensure that VET learners acquire the necessary knowledge, skills, values and attitudes to participate fully in democratic life.

The Council of Europe Reference Framework for Democratic Culture and the Unesco AI Competence Framework can provide a focus for a wider understanding of AI competences in VET and provide a challenge for how they can be implemented in practice. 

Such an understanding can shape an educational landscape that leverages AI while safeguarding human agency, motivation, and ethics. As generative AI advances, continuous dialogue and investigation among all educational stakeholders are essential to ensure these technologies enhance learning outcomes and equip students for an AI-driven future.

References

Dewey, J. (1916) Democracy and Education: an introduction to the philosophy of education, New York: Macmillan. https://archive.org/stream/democracyandedu00dewegoog#page/n6/mode/2up. Retrieved 4 May 2024 

Long, D., & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems

UNESCO (2024) AI Competency Framework for Students, https://unesdoc.unesco.org/ark:/48223/pf0000391105

AI and Critical Hype Studies

Clarote & AI4Media / Better Images of AI / Power/Profit / CC-BY 4.0

What ever you think about Artificial Intelligence, it cannot be denied that it has generated - and continues to generate - a lot of hype. And in the AI and education field it feels as if the hype is advancing, perhaps because education is seen as massive market for shiny new (and expensive) toys. So I liked this recent post on LinkedIn by Andreu Belsunces Gonçalves about Critical Hype Studies.

A panel at the EASST/4S conference aimed, he says, “at outlining what the field of critical hype studies could be. Although we're still in the early stages, here are some tentative insights from four days of intense, varied, and lengthy discussions about hype, technology, futures, fiction, narratives, rhetorics, and finances in Amsterdam.”

The Politics of Hype is defined as follows:
a. Hype is an interface between experts and non-experts, leaving non-experts vulnerable to oversimplified, overpromising expert statements.
b. The capacity to produce and disseminate hype is unevenly distributed and generally benefits the already privileged—wealthy, educated, male, Western (i.e., economically powerful countries like the USA or Germany take greater advantage of AI hype).

The post goes on to summarise the conversations and presentations of the two panels reflecting on critical hype studies and hype in the promissory economy.

Transforming Vocational Education – AI in Theory and Practice

George Bekiaridis and Graham Attwell have made a keynote presentation to the Second Conference on the Reference Framework of Competences for Democratic Culture and Vocational Education and Training to be held on 24 and 25 October 2024 at the Council of Europe in Strasbourg, France. The event was be dedicated to discussing the chapters of the new publication on the Council of Europe’s Reference Framework of Competences for Democratic Culture (RFCDC) and VET.

In the presentation, Transforming Vocational Training - AI in theory and practice, they introduced ongoing research on using Activity Theory to analyse the impact of AI learning as a result of tool-mediated interactions, showcasing how conceptual frameworks, technologies, practical actions, individuals, and social institutions mutually shape each other in the learning process. They drew attention to the UNESCO Framework for competences in AI for students. which emphasises the importance of competences for citizenship, similar to the work of the Council of Europe's work on Democratic Culture. You can download a copy of the presentation here. It is licensed under a Creative Commons Creative Commons Attribution-NonCommercial 4.0 International License.

What are Learning Tools?

Yutong Liu & Kingston School of Art / Better Images of AI / Talking to AI 2.0 / CC-BY 4.0

There's an interesting post from Philippa Hardman in her newsletter today. Entitled Are ChatGPT, Claude & NotebookLM *Really* Disrupting Education?  her research asks how much and how well do popular AI tools really support human learning and, in the process, disrupt education?
She created a simple evaluation rubric to explore five key research questions: 

1. Inclusion of Information

2. Exclusion of Information

3. [De]Emphasis of Information

4. Structure & Flow

5. Tone & Style

Philippa Hardman used her own research articles as the input material, which she fed into what she says are considered to be the three big AI tools for learning: 

  1. ChatGPT 4o
  2. Claude 3.5
  3. NotebookLM

She prompted each tool in turn to read the article carefully and summarise it, ensuring that it covered all key concepts, ideas etc ensuring that I get a thorough understanding of the article and research.

She provides a detailed table of the results of each of the three applications, and additionally of the NotebookLM podcast application, assessing the strengths and weaknesses of each. she says that "while generative AI tools undoubtedly enhance access to information, they also actively “intervene” in the information-sharing process, actively shaping the type and depth of information that we receive, as well as (thanks to changed in format and tone) its meaning. "

She goes on to say:

While popular AI tools are helpful for summarising and simplifying information, when we start to dig into the detail of AI’s outputs we’re reminded that these tools are not objective; they actively “intervene” and shape the information that we consume in ways which could be argued to have a problematic impact on “learning”.

Another thing is also clear: tools like ChatGPT4o, Claude & Notebook are not yet comprehensive “learning tools” or “education apps”. To truly support human learning and deliver effective education, AI tools need to do more than provide access to information—they need to support learners intentionally through carefully selected and sequenced pedagogical stages.  

Her closing thoughts are about Redefining the “Learning” Process . She says:

It’s clear that AI tools like ChatGPT, Claude, and NotebookLM are incredibly valuable for making complex ideas more accessible; they excel in summarisation and simplification, which opens up access to knowledge and helps learners take the first step in their learning journey. However, these tools are not learning tools in the full sense of the term—at least not yet.

By labelling tools like ChatGPT 4oClaude 3.5 & NotebookLM as “learning tools” we perpetuate the common misconception that “learning” is a process of disseminating and absorbing information. In reality, the process of learning is a deeply complex cognitive, social, emotional and psychological one, which exists over time and space and which must be designed and delivered with intention.

AI and Motivation for Learning

Photo by Tim Mossholder on Unsplash

Here's the follow up I promised in my last post about earners' and teachers' Agency and Gen AI.

Motivation plays a crucial role in the learning process. As opposed to behaviorist theories of learning,  learners are increasingly seen as active participants in learning leading to a focus on how learners make sense of and choose to engage with their learning environments (National Academies of Sciences, Engineering, and Medicine. 2018). Cognitive theories, for example, have focused on how learners set goals for learning and achievement and how they maintain and monitor their progress toward those goals. While earlier research focused largely on the classroom environment, newer research, especially following the emergency online learning turn during the Covid19 emergency, has looked at the online learning environment mediated by various forms of technology (Thomas K. F. Chiu, Tzung-Jin Lin, and Kirsti Lonka. 2021) Social interactions mediated by technology affect learning through their impacts on students’ goals, beliefs, affect, and actions (Social interactions mediated by technology affect learning through their impacts on students’ goals, beliefs, affect, and actions (Manjur Kolhar, Raisa Nazir Ahmed Kazi, Abdalla Alameen, 2021).

“Motivation is also increasingly viewed as an emergent phenomenon, meaning it can develop over time and change as a result of one’s experiences with learning and other circumstances”  (Thomas K. F. Chiu, Tzung-Jin Lin, and Kirsti Lonka, 2021) . Research suggests, for example, that aspects of the learning environment can both trigger and sustain a student’s curiosity and interest in ways that support motivation and learning (Hidi and Renninger, 2006). Of course the converse can apply with learning environments reducing motivation.

There are an increasing number of studies looking at how Generative AI impacts on learning and motivation. Yet many of these are attempting to measure the effectiveness of learning and rely on achievement in assessment as a proxy for learning. Excepting learning to program, there is limited evidence from Vocational Education and Training, despite VET being largely learning outcomes based. However, measuring effectiveness and motivation in VET is made more complicated by the many different models of VET provision.

Neither is there any consensus about the efficacy of AI for learning. In his OL Daily Newsletter, Stephen Downes (2024) discusses a  LinkedIn post from Ethan Mollick stating "AI can help learning... when it isn't a crutch." Mollick cites three papers: firstly AI Meets the Classroom: When Does ChatGPT Harm Learning? which states "Using LLMs as personal tutors by asking them for explanations improves learning outcomes whereas excessively asking LLMs to generate solutions impairs learning." Second, Generative AI Can Harm Learning says "students attempt to use GPT-4 as a 'crutch' during practice problem sessions, and when successful, perform worse on their own" though "These negative learning effects are largely mitigated by the safeguards included in GPT Tutor." Third, Effective and Scalable Math Support says "chat-based tutoring solutions leveraging AI could offer a cost-effective and operationally efficient approach to enhancing learning outcomes for millions of students globally." Downes concludes “All these results are, at worst, mixed, and at best, show genuine promise in AI for improving learning.”

Of course, motivation is only one factor in improving learning. Motivation is generally divided between Intrinsic and extrinsic motivation. Generative AI can potentially enhance intrinsic motivation through immediate feedback and adaptive challenges and enabling more creative and open-ended projects that align with students' interests It can also offer novel and engaging ways to interact with learning materials. But Artemova (2024) says “it has been demonstrated that students are primarily involved with learning activities for reasons other than epistemological curiosity or a desire to learn. Instead, they are motivated by the desire to interact with technology or to meet the expectations set by educational software.”

And while extrinsic motivation can be effective, over-reliance on AI-powered reward systems or gamification elements may lead to a focus on external rewards rather than the inherent value of learning. There is also a danger that students might become overly dependent on AI assistance, potentially undermining their confidence in their own abilities and the ease of generating content with AI might lead to questions about the authenticity of student work, potentially impacting intrinsic motivation. A further concern is that the availability of instant AI-generated answers might reduce students' motivation to engage in effortful cognitive processes.

Inna Artemova (2024) who has undertaken an analysis of 69 articles for her paper Digital Education Review ‘Bridging Motivation and AI in Education: An Activity Theory Perspective’ concludes “that in 56 research papers motivation is seen as extrinsic, which implies a greater involvement of students in the learning process due to increased interactivity and adaptability of the content (Yang et al., 2020). Through text analysis, it is clear that this type of motivation is driven by motives-stimuli, such as personalised learning environments (Bulathwela et al., 2024), which in fact means that motivation in this case is secondary to the AI implementation and is guided by the AI.”

If I may add a personal viewpoint drawn from my own learning of Spanish using the popular DuoLingo online learning environment, which is heavily gamified and provides personalised learning content, it develops both intrinsic and extrinsic motivation. Particularly effective is the exhortation to practise regularly using the idea of a ‘streak’ based on how many continuous days you have accessed the application (although it also allows a limited streak freeze. I have now been learning on DuoLingo for a three year streak. How effective my learning has proved to be is another question.

Clearly, as with so much on AI and education, this is an emergent area of research with contested viewpoints. But we would tentatively conclude that while Generative AI offers many opportunities to enhance motivation, it may also present challenges that need to be addressed. Educators must be aware of these potential pitfalls and develop strategies to maintain healthy motivational patterns in AI-enhanced learning environments.

References

Bastani, B., Bastani, O., ASangu A., Ge, H., Kabakcı. O., Mariman, R.  (2024) Generative AI Can Harm Learning, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4895486

Bulathwela, S., Pérez-Ortiz, M., Holloway, C., Cukurova, M., & Shawe-Taylor, J. (2024). Artificial Intelligence Alone Will Not Democratise Education: On Educational Inequality, Techno-Solutionism and Inclusive Tools. Sustainability, 16(2), 781. https://doi.org/10.3390/su16020781

Downes, S. (2024) Student use of LLMs can inhibit learning, https://www.downes.ca/post/77127

Henkel, H., 1, Horne-Robinson, H., Kozhakhmetova, N., Lee, A. Effective and Scalable Math Support: Experimental Evidence on the Impact of an AI- Math Tutor in Ghana . https://arxiv.org/ftp/arxiv/papers/2402/2402.09809.pdf

Hidi, S., & Renninger, K. A. (2006). The Four-Phase Model of Interest Development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4

Inna Artemova (2024) Bridging Motivation and AI in Education: An Activity Theory Perspective, in Digital Education Review, https://revistes.ub.edu/index.php/der/article/view/46120

Kolhar, M., Nazir R., Kazi, A., Alameen, A. (2021) Effect of social media use on learning, social interactions, and sleep duration among university students, Saudi Journal of Biological Sciences, Volume 28, Issue 4,

Matthias Lehmann,M., Cornelius, P., Sting F.  (2024) AI Meets the Classroom:

Mollick, E. (2024) https://www.linkedin.com/posts/emollick_ai-can-help-learning-when-it-isnt-a-crutch-activity-7250556786640924672-Enhg/

National Academies of Sciences, Engineering, and Medicine. 2018. How People Learn II: Learners, Contexts, and Cultures. Washington, DC: The National Academies Press. https://doi.org/10.17226/24783.

Thomas K. F. Chiu, Tzung-Jin Lin, and Kirsti Lonka. (2021) Motivating Online Learning: The Challenges of COVID-19 and Beyond, https://link.springer.com/content/pdf/10.1007/s40299-021-00566-w.pdf

When Does ChatGPT Harm Learning?, https://arxiv.org/pdf/2409.09047v1

Yang, D., Oh, E.-S., Wang, Y. (2020). Hybrid Physical Education Teaching and Curriculum Design Based on a Voice Interactive Artificial Intelligence Educational Robot. Sustainability,12(19), 8000. https://doi.org/10.3390/su12198000