AI: education and learning are not the same thing

Rick Payne and team / Better Images of AI / Ai is… Banner / CC-BY 4.0

As the debate rolls on about the use of AI in education,we seem stuck on previous paradigms abut how technology can be used to support the existing education system rather than thing about AI and learning. Bill Gates said last week "The dream that you could have a tutor who’s always available to you, and understands how to motivate you, what your level of knowledge is, this software should give us that. When you’re outside the classroom, that personal tutor is helping you out, encouraging you, and then your teacher, you know, talks to the personal tutor." This can be seen in the release of Apps designed to make the system run more efficiently and support teachers in producing lesson plans, reduce administration etc. And for learners a swath of tutor apps and agents to help navigate the way through to support skills and knowledge development.

But writing about the popular educational exercise of future forecasting in the European Journal of Education in 2022, Neil Selwyn outlined five broad areas of contention that merit closer attention in future discussion and decision-making. These include, he said:

(1) "taking care to focus on issues relating to 'actually existing' AI rather than the overselling of speculative AI technologies;

(2) clearly foregrounding the limitations of AI in terms of modelling social contexts, and simulating human intelligence, reckoning, autonomy and emotions;

(3) foregrounding the social harms associated with AI use;

(4) acknowledging the value-driven nature of claims around AI; and

(5) paying closer attention to the environmental and ecological sustainability of continued AI development and implementation."

In a recent presentation, Rethinking Education, rather than predicting the future of technology in education, Ilkka Tuomi reconsiders the purpose of AI in education which he says "changes knowledge production and use. This has implications for education, research, innovation, politics, and culture. Current educational institutions are answers to industrial-age historical needs."

EdTech he says, has conflated education and learning but they are not the same thing. He quotes Biesta(2015 who said "education is not designed so that children and young people might learn –people can learn anywhere and do not really need education for it –but so that they might learn particular things, for particular reasons, supported by particular (educational) relationships.” (Biesta, 2015)

He goes on to quote Arendt (2061) who said “Normally the child is first introduced to the world in school. Now school is by no means the world and must not pretend to be; it is rather the institution that we interpose between the private domain of home and the world in order to make the transition from the family to the world possible at all. Attendance there is required not by the family but by the state, that is by the public world, and so, in relation to the child, school in a sense represents the world, although it is not yet actually the world.”

Education 4.0 he says is supposedly about “Preparing children for the demands of the future. "Education becomes a skill-production machine." Yet "Skills are typically reflections of existing technology that is used in productive practice and "Skills change when technology changes." Tumomi notes "There are now 13 393 skills listed in the European Skills, Competences, and Occupations taxonomy."

Digital skills are special, he says "because the computer is a multi-purpose tool" and "AI skills are even more special, because they interact with human cognition."

Social and emotional “skills” rank-order people“. "'21st century skills' are strongly linked to human personality, which, by definition, is stable across the life-span and People can be sorted based on, e.g., “openness to experience,” “conscientiousness,” “agreeableness,” “verbal ability,” “complex problem-solving skills,” etc."

Their position is these list doesn’t change in education and "Instead, training and technology potentially increase existing differences.|"

Tuomi draws attention to the the three social functions of education:

  • "Enculturation: Becoming a member of the adult world, community of practice, or thought community
  • Development of human agency: Becoming a competent participant in social and material worlds with the capability to transform them
  • Reproduction of social structures: Maintaining social continuity; social stratification through qualification and social filtering'
  • AI in education supports Enculturation through:
  • "AI for knowledge transfer and mastery
  • Development of human agency
  • AI for augmentation of agency
  • Reproduction of social structures
  • AI for prediction and classification (drop-out / at-risk, high-stakes assessment)Incentives and motives in HE."

But while "Students used to be proud to be on their way into becoming respected experts and professionals in the society which For many families, this required sacrifice they are now facing LLMs that know everything." Why, he asks "should you waste your time in becoming an expert in a world, where the answers and explanations become near zero-cost commodities?" What happens to HE, he ask, "when AI erodes the epistemic function of education? The traditional focus of AI&ED in accelerating learning and achieving mastery of specific knowledge topics is not sustainable"

His proposal is that "The only sustainable advantage for primary and secondary education, will be a focus on the development of human agency. Agency is augmented by technology. Agency is culturally embedded and relies on social collaboration and coordination. Affect and emotion are important and the epistemic function will be increasingly seen from the point of view of cognitive development (not knowledge acquisition). Qualification has already lost importance as the network makes history visible. It still is important for social stratification (in many countries)."

He concludes by reiterating that "Education is a social institution. It should not be conflated with 'learning'. AI vendors typically reinterpret education as learning. Education becomes “personalized” and “individualized,” and the objective changes to fast acquisition of economically useful skills and knowledge. The vendors are looking for education under the lamp-post, but this lamp-post is something they themselves have set up. Very little to do with education."

Is AI just another tool, or does it redefine the essence of competence itself?

This is the second of our interviews with experts on AI in education for the AI Pioneers project. Thr interview is with Ilkka Tuomi. Ilkka Tuomi is the Founder and Chief Scientist at Meaning Processing Ltd, an independent public research organization located in Helsinki, Finland. He previously worked at the European Commission's Joint Research Centre (JRC), Institute for Prospective Technological Studies, Seville, Spain. In 2020 he produced a background report for the European Parliament on the 'The use of Artificial Intelligence (AI) in education' and has recently produced a study 'On the Futures of technology in Education: Emerging Trends and Policy Implications' published as a JRC Science for Policy Report. He is writing and commenting regularly on AI on LinkedIn.

[Q1] Can you tell us about the motivation behind your recent publication for the EC Joint Research Centre and the future of technologies in learning?

[A1] My recent publication for the JRC was motivated by my curiosity about the future of learning and the rapidly changing technology landscape. I began by asking which technologies would be essential for policy considerations over the next decade. From this, I compiled a list of technologies that seemed promising for initial discussions. In the process, it became clear that a fundamentally new infrastructure for knowing and learning is emerging. We call this “the Next Internet” in the report. My goal was to both initiate a conversation and delve into the connections between these emerging technologies and new educational models. More broadly, I was interested in how these advancements might transform the education system itself. An essential part of my research also revolved around the evolving dynamics of knowledge production and the importance of innovation in knowledge society, and the implications this has for education. For instance, about the emerging sixth-generation networks offer intriguing sociological and cognitive perspectives, and even on the impact of AI on learning.

[Q2] How do new cognitive tools influence our understanding of learning?

[A2] These cognitive tools aren't just emerging as solutions to automate current practices. They delve much deeper, challenging our very understanding of what learning means and how it occurs. My perspective on this is shaped by my background in both AI and learning theory. I approach this topic from both a sociological viewpoint and in terms of how digital transformations impact society as a whole.

[Q3] Could you share some of your background and experiences in the field of AI?

[A3] When I was younger, I was deeply involved in neural networks research and even co-authored a book on the philosophy of AI back in 1989. Around this time, I joined the Nokia Research Center. Initially, I worked with knowledge-based systems and expert systems, in other words the good-old-fashioned AI. Over time, I transitioned towards human-computer mediated interaction and knowledge management. The latter is, of course, very much about learning and knowledge creation. While the buzz around AI is louder than ever today, I find a dearth of profound discussions on the topic. There's a pressing need for a deeper, more thoughtful debate.

[Q4] What impact do you foresee AI having on vocational education?

[A4] AI's impact on vocational education is twofold. Firstly, we're still uncertain about how AI will reshape vocations and the job market. However, it's evident that the essence of vocational training is undergoing change. Technologies, especially generative AI and other machine learning methodologies, will dramatically influence occupational structures and content. This will inevitably change what people learn. Much of what's taught in vocational schools today might become obsolete or require significant modifications. Many educators are concerned that the skills and knowledge they impart today may become irrelevant in just five years. On the other hand, AI will also change how we learn.

[Q5] How can these technologies be integrated into the educational process?

[A5] These technologies offer immense potential for educational applications. Already, there are tools that enable a generative AI system to process, for instance, technical handbooks and repair manuals. With this knowledge, the AI can then answer domain-specific queries, providing up-to-date information about tools and technologies on demand. Consider a trainee in the construction industry; they could access building schematics through AI without having to study them exhaustively. Multimodal AI interfaces could allow them to photograph an unfamiliar object and get guidance on its use. Such an application can be used in fields like automotive repair, where a mechanic can photograph a fault and receive advice on necessary parts and repair procedures. These tools not only aid in teaching but can also be directly implemented in professional settings. Such applications particularly resonate with vocational education, transforming the very core of professional knowledge and identity.

In today's rapidly evolving digital age, vocational education stands at a unique crossroads. At its core, vocational education is profoundly hands-on and concrete, focusing not on abstract knowledge but on tangible skills and real-world applications. It's about doing, making, and creating. And this is where multimodal Generative AI now comes into play.

Generative AI has the potential to integrate the concrete world with the abstract realm of digital information. Real-world objects and practical training exercises can be complemented by augmented and virtual reality environments powered by AI. We're on the brink of a transformative shift where AI will not just assist but redefine vocational training.

Furthermore, the economic implications of AI in this sphere are revolutionary. In the past, creating detailed digital representations of complex machinery, like airplanes, was a costly and time-consuming endeavor. Now, with Generative AI, these models can be produced with increased efficiency and reduced costs. Whether it's for pilot training or for a mechanic understanding an engine's intricate details, AI radically simplifies and economizes the process.

[Q6] Do we need to redefine what we mean by competence?

[A6] Traditionally, competence has been perceived as an individual's capability to perform tasks and achieve goals. It's often broken down into knowledge, skills, and attitudes. Education has historically focused on what I have called the epistemic competence components. The move towards “21st century skills and competences” is fundamentally about a shift towards behavioral competence components that include aptitudes, motives, and personality traits ranging from creativity to social capabilities.

However, an essential nuance often overlooked in our understanding of competence is the external environment. For instance, a highly skilled brain surgeon is only as competent as the tools and infrastructure available to him. It's not just about what resides in the individual's mind but also about the societal structures, technological tools, and the overarching environment in which they operate.

Reflecting on education and technology, the narrative becomes even more intricate. An educator's competence cannot be solely gauged by their ability to use digital tools. The broader context—whether a school has the required digital infrastructure or the societal norms and regulations around technology use—plays a pivotal role. Emphasizing technology for technology's sake can sometimes be counterproductive. The question arises: is AI just another tool, or does it redefine the essence of competence itself?

[Q7] What are the major challenges of AI?

[A7] Looking back, one can find parallels in the challenges faced by earlier technological innovations. My experience in the 1990s at Nokia serves as a poignant example. While AI was once viewed as a magic bullet solution, it soon became evident that the challenges in organizations were as much social as they were technological.

Communication is the heart of learning and innovation. It's not merely about making the right decisions or processing vast amounts of data. Instead, it's about the rich tapestry of human interactions that shape ideas, beliefs, and knowledge. The introduction of new technologies often disrupts existing knowledge structures and requires substantial social adaptation. The process, thus, becomes more about managing change and facilitating communication.

[IT1] [IT2] [Q8] What are the implications of AI for Agency

[A8] Humans have always externalized specific cognitive tasks to tools and technologies around them. In this light, AI doesn't stand as a looming threat but a natural progression, a tool that could enhance human cognition beyond our current boundaries. But AI is also different. Its increasing human-like interactivity and capabilities challenge our traditional, anthropocentric views on agency. In fact, one key message in our JRC report was that we need to understand better how agency is distributed in learning processes when AI is used.

Innovations like AI don't just supplement our existing reality—they redefine it. Grasping this intricate dance between societal evolution and our shifting reality is essential to fathom AI's transformative potential.

[Q39 How will AI shape the future of Education?

[A9] AI's purpose in education should be to enhance human capabilities. This enhancement isn't limited to just individual's cognitive functions; it spans the social and behavioral realms too. In contrast to the post-industrial era, when computers were increasingly used to automate manual and knowledge work, AI and the emerging next Internet are now fusing the material world and its digital representations into an actionable reality. This is something we have not seen before. The material basis of social and cultural production is changing. As a result, the nature of knowing is changing as well. My claim has been that, in such a world, education must reconceptualize its social objectives and functions. The development of human agency might well be the fundamental objective of education in this emerging world. We need to learn, not only how to do things, but also what to do and why. This may, of course, also require rethinking the futures of vocational education and training.


AI Competency Framework for Teachers

UNESCO are very active in the debates over AI in education, in part driven by their responsibility for the UN Sustainability goals on education, which in a recent report were behind on target. AI is seen as potentially developing the capacity of education provision, especially in regions like Sub Saharan Africa, which have severe shortages of teachers.

At their Digital Learning week conference, UNESCO introduced their AI Competency Framework for Teachers and School Students which they described as "a work in progress."

They say: "The AI CFT offers a simplified, yet flexible structure that can be tailored by teachers in their local classroom contexts and institutional and system decision-makers in framing their teacher professional learning systems." "The following structure "organises 18 competencies along three broadly defined levels of progression and six cross-cutting thematic aspects."

The Framework is now open for consultation either by adding comments in the online version or by filling in a consultation form. The Call for Comments and Consultation form says: "Your valuable feedback is essential to ensure that these frameworks are inclusive of diverse educational contexts across the world and that they serve as relevant guides in preparing education systems to harness the potential of AI while being responsive to AI risks and upholding ethical and rights-based values in promoting student success."

UNESCO AI Competency Framework for Teachers

Last weeks UNESCO Digital Learning conference attracted attendees from over the world and significant press and social media interest. Much of the focus was on AI and education, especially around the UNESCO publication of what they say is the first-ever global Guidance on Generative AI in Education and Research, designed to address the disruptions caused by Generative AI technologies. A recent UNESCO global survey of over 450 schools and universities showed that less than 10% of them had institutional policies and/or formal guidance concerning the use of generative AI applications, largely due to the absence of national regulations. The UNESCO Guidance sets out "seven key steps for governments should take to regulate Generative AI and establish policy frameworks for its ethical use in education and research, including through the adoption of global, regional or national data protection and privacy standards. It also sets an age limit of 13 for the use of AI tools in the classroom and calls for teacher training on this subject." Perhaps more significant for those of us working on competences for teachers and trainers in using AI for teaching and learning (as in the AI pioneers European project) was the publication of the UNESCO AI Competency Frameworks for Teachers and School Students. In a draft discussion document they say the "AI CFT responds to the stated gap in knowledge and experience globally and offers initial guidance on how teachers can be prepared for a growing AI-powered education system." They go on to explain:
The AI CFT is targeted at a wide-ranging teacher community, including pre-service and in-service teachers, teacher educators and trainers in formal, non-formal education institutions, policymakers, officials and staff involved in teacher professional learning ecosystems from early childhood development, basic education, to higher and tertiary education.... The purpose of the AI CFT is to provide an inclusive framework that can guide teachers, teaching communities and the teacher education systems worldwide to leverage the educational affordances of AI, and develop the critical agency, knowledge, skills, attitudes and values needed to manage the risks and threats associated with AI. It promotes the responsible, ethical, equitable and inclusive design and use of AI in education.
The draft discussion document provides a diagram of a High-level Structure of the proposed AI Competency Framework for Teachers.
Further diagrams provide progression routes and more detailed contents for the Framework. The main criticism in social media was not so much the content of the Framework, but that the Framework is based on Blooms taxonomy, with some asserting that the taxonomy is outdated and doubts being raised as to whether teachers would be able to follow an orderly progression route around AI. UNESCO Have asked for feedback on both the Framwork for Teachers and the Framework for students on an online form.

An ethical framework for Learning Technology

The Association for Learning Technologies in the UK  (ALT) has the strategic aim of strengthening recognition and representation for Learning Technology professionals from all sectors. one of the priorities Members identified for this year is to develop an ethical framework for Learning Technology. They have developed a professional accreditation framework, CMALT, and last year extended it to include ethical considerations for professional practice and research last year.

They are now developing a framework that can be used as a starting point for informing the ethical use of Learning Technology by professionals, institutions and industry and, they say, "have worked to define a set of ethical principles which will form the core of the new framework alongside tools including for example a checklist or reflective questionnaire, to help individuals, institutions and industry to see how these principles are put into action.:

They have now launched a  Consultation, open until 5 June 2021, and are looking for feedback and input via a questionnaire to help finalise the framework ahead of the launch in September.