Homework Apocolypse?

Catherine Breslin & Tania Duarte / Better Images of AI / AI silicon clouds collage / CC-BY 4.0

November marks two years since the release of Open AI's GPT large language model chatbot. Since then AI, or more specifically Generative AI has dominated the discourse over the future of education. And of course it has spawned hundreds of project resulting in an increasing torrent of research results. Yet on one critical issue - does the use of AI improve learning - there appears little consensus. This is probably because we have no good ways of measuring learning. Instead we use performance in tests and exams as a proxy for learning. And its probably true to say that the debates over AI are turning the heat on the use of such a proxy, just as it is on the essay as the dominant form of assessment in schools and universities.

Last week in his newsletter, One Useful thing, Ethan Mollick talked about the use of AI, cheating and learning in an article entitled 'What comes after the Homework Apocalypse'. It is probably fair to say Ethan is a big fan of AI in education.

To be clear, AI is not the root cause of cheating. Cheating happens because schoolwork is hard and high stakes. And schoolwork is hard and high stakes because learning is not always fun and forms of extrinsic motivation, like grades, are often required to get people to learn. People are exquisitely good at figuring out ways to avoid things they don’t like to do, and, as a major new analysis shows, most people don’t like mental effort. So, they delegate some of that effort to the AI. In general, I am in favor of delegating tasks to AI (the subject of my new class on MasterClass), but education is different - the effort is the point.

He postulated that fall in grades achieved by students in the USA between 2008 and 2017 had been caused by the increasing use of the Internet for homework. Students were simply copying homework answers. And in an experiment in ma high school in Turkey with students using GPT4 grades for homework went up but final exam grades fell. But giving students GPT with a basic tutor prompt for ChatGPT, instead of having them use ChatGPT on their own, boosted homework scores without lowering final exam grades. 

Ethan says this shows "we need to center teachers in the process of using AI, rather than just leaving AI to students (or to those who dream of replacing teachers entirely). We know that almost three-quarters of teachers are already using AI for work, but we have just started to learn the most effective ways for teachers to use AI."

He remains convinced to the value of Generative AI in education. The question now, he says "is not whether AI will change education, but how we will shape that change to create a more effective, equitable, and engaging learning environment for all."

AI Competency Framework for teachers

At last week's Digital Learning Week 2024, UNESCO formally launched two AI Competence Frameworks, one for teachers and the other for students. These frameworks aim to guide countries in supporting students and teachers to understand the potential as well as risks of AI in order to engage with it in a safe, ethical and responsible manner in education and beyond.

Above is a copy of Tim Evans popular poster  summarizing the AI Competency Framework for Teachers. He says "I've taken the extensive, lengthy report and attempted to gather my take on the 10 key points, and areas of focus." Tim has also made a copy of the poster available on Canva.

AI: What do teachers want?

Yutong Liu & Kingston School of Art / Better Images of AI / Talking to AI / CC-BY 4.0

A quick post in follow up to my article yesterday on the proposals by the UK Department for Education to commission tech companies to develop an AI app for teachers to save them time. The Algorithm - a newsletter from MIT Technology Review picked up on this today, saying "this year, more and more educational technology companies are pitching schools on a different use of AI. Rather than scrambling to tamp down the use of it in the classroom, these companies are coaching teachers how to use AI tools to cut down on time they spend on tasks like grading, providing feedback to students, or planning lessons. They’re positioning AI as a teacher’s ultimate time saver."

The article goes on to ask how willing teachers are to turn over some of their responsibilities to an AI model? The answer, they say, really depends on the task, according to Leon Furze, an educator and PhD candidate at Deakin University who studies the impact of generative AI on writing instruction and education.

“We know from plenty of research that teacher workload actually comes from data collection and analysis, reporting, and communications,” he says. “Those are all areas where AI can help.”

Then there are a host of not-so-menial tasks that teachers are more skeptical AI can excel at. They often come down to two core teaching responsibilities: lesson planning and grading. A host of companies offer large language models that they say can generate lesson plans that conform to different curriculum standards. Some teachers, including in some California districts, have also used AI models to grade and provide feedback for essays. For these applications of AI, Furze says, many of the teachers he works with are less confident in its reliability. 

Companies promising time savings for planning and grading “is a huge red flag, because those are core parts of the profession,” he says. “Lesson planning is—or should be—thoughtful, creative, even fun.” Automated feedback for creative skills like writing is controversial too. “Students want feedback from humans, and assessment is a way for teachers to get to know students. Some feedback can be automated, but not all.” 

TeacherMatic

The AI pioneers project which is researching an developing approaches to the use of AI in vocational and adult education in Europe is presently working on a Toolkit including analysis of a considerable number of AI tools for education. Indeed a problem is that so many new tools and applications are being released it is hard for organisations to know what they should be trying out.

In the UK, JISC has been piloting and evaluating a number of different applications and tools in vocational colleges. Their latest report is about TeacherMatic which appears to be adapted in many UK Further Education Colleges. TeacherMatic is a generative AI-powered platform tailored for educators. It provides an extensive toolkit featuring more than 50 innovative tools designed to simplify the creation of educational content. These tools help in generating various teaching aids, such as lesson plans, quizzes, schemes of work and multiple-choice questions, without users needing to have expertise in prompt engineering. Instead, educators can issue straightforward instructions to produce or adapt existing resources, including presentations, Word documents, and PDFs. The main goal of TeacherMatic, the developers say, is to enhance teaching efficiency and lighten educators’ workloads. To allow teachers to dedicate more time to student interaction and less to repetitive tasks.

For the pilot, each participating institution received 50 licenses for 12 months, enabling around 400 participants to actively engage with and evaluate the TeacherMatic platform.

The summary of the evaluation of the pilot is as follows.

The pilot indicates that TeacherMatic can save users time and create good quality resources. Participants commended the platform for its ease of use, efficient content generation, and benefits to workload. Feedback also highlighted areas for improvement and new feature suggestions which the TeacherMatic team were very quick to take on board and where possible implement.

Participants found TeacherMatic to be user-friendly, particularly praising its easy-to-use interface and simple content generation process. The platform was noted for its instructional icons, videos, and features such as Bloom’s taxonomy, which assists in creating educational content efficiently. However, suggestions for enhancements include the ability to integrate multiple generators into a single generator. It also remains essential for users to evaluate the generated content, ensuring it is suitable and accessible to the intended audience.

TeacherMatic was well-received across institutions, for its capabilities, especially beneficial for new teaching staff and those adapting to changing course specifications. Feedback showed that TeacherMatic is particularly valuable for those previously unfamiliar with generative AI. Pricing was generally seen as reasonable, aligning with most participants’ expectations.

TeacherMatic has been well-received, with a majority of participants recognising its benefits and expressing a willingness to continue using and recommending the tool.

AI in Education – the question of hype and reality

Max Gruber / Better Images of AI / Banana / Plant / Flask / CC-BY 4.0

I have spent a lot of time over the past two weeks working on the first year evaluation report for the AI pioneers Web site. Evaluation seems to come in and out of fashion on European Commission funded projects. And now its in an upswing, partly due to the move to funding projects based on the products and results, rather than number of working days claimed.

For the AI Pioneers project, I have adopted a Participant oriented approach to the evaluation. This puts the needs of project participants as its starting point. Participants are not seen as simply the direct target group of of the project but will includes other stakeholders and potential beneficiaries. Participant-orientated evaluation looks for patterns in the data as the evaluation progresses and data is gathered in a variety of ways, using a range of techniques and culled from many different sources. Understandings grow from observation and bottom up investigation rather than rational deductive processes. The evaluator’s key role is to represent multiple realities and values rather than singular perspectives.

Hopefully we will be able to publish the Evaluation report in the early new year. But here are a few take aways, mainly gleaned from interview I undertook with each of the project partners.

The partners have a high level of commitment to the project. However the work they are able to undertake, depends to a large extent on their role in their organisations and the organisations role in the wider are of education. Pretty much all of the project partners, and I certainly concur with this sentiment, feel overwhelmed by the sheer volume of reports and discourse around AI in education and the speed of development especially around generative AI, makes it difficult to stay up to date. All the partners are using AI to some extent. Having said that there is a tendency to thing of Generative AI as being AI as a whole, and to forget about the many uses of AI which are not based on Large Language Models.

Despite the hype (as John Naughton in his Memex 1.1 newsletter pointed out this week AI is at the peak of the Gartner hype cycle, see illustration) finding actual examples of the use of AI in education and training and Adult Education is not easy.

A survey undertaken by the AI pioneers project found few vcoati0nal education and train9ing organisations in Europe had a policy on AI. There is considerable differences between different sectors - Marketing, Graphic design, computing, robotics and healthcare appear to be ahead but in many subjects and many institutions there is little actual movement in incorporating AI, either as a subject or for teaching and learning. And indeed, where there are initial projects taking place, this is often driven by enthusiastic individuals, with or without the knowledge of their managers.

This finding chimes with reports from other perspect6ives. Donald H Taylor and Egle Vinauskaite have produced a report looking at how AI is being used in workplace Learning and Development today, and concludes that it is in its infancy. "Of course, some extraordinary things are being done with AI within L&D," they say. "But our research suggests that where AI is currently being used by L&D, it is largely for the routine tasks of content creation and increased efficiency."

If there is one message L&D practitioners should take away from this report, it is that there is no need to panic – you are not falling far behind your peers, for the simple reason that very few are making major strides with AI. There is every need, however, to act, if only in a small way, to familiarize yourself with what AI has to offer.

Donald H Taylor and Egle Vinauskaite. Focus on AI in L&D, https://donaldhtaylor.co.uk/research_base/focus-on-ai-in-ld/

Indeed, for all the talk of the digital transformation in education and training, it my be that education, and certainly higher education, is remarkably resistant to the much vaunted hype of disruption and that even though AI will have a major impact it may be slower than predicted.