Searching for the AI bridge builders

We need to democratise access to AI but the language we use to talk about it is a barrier.

There is a lot of fear around AI advances and this is perpetuated when only the ‘big tech’ and the academics have access to the tools, the theory and the conversations. For me this is a major theme in AI ethics right now. We can’t have conversations about ‘the black box around generative AI’ as if everyone understands the concept. Similarly ‘language models’, ‘the dynamics of knowledge production’, or ‘neural networks’. I suspect that I have already lost a large chunk of my friends and family and we are only on the first paragraph.

We talk a lot about bias in the data; there’s a great advert doing the rounds on social media at the moment where an AI was prompted to draw Barbie dolls from around the world. Some of the results are quite a shocking reflection on our own stereotypes and cultural tropes with German Barbie depicted in a Nazi uniform and African Barbie carrying a gun. AI may have created the images but we have supplied the data. It is an accessible depiction of bias, we need more accessible depictions of AI concepts.

As academics, researchers and professionals, what we don't see so easily is the bias innate in our own use of language around AI. It is the same in all industries, in all academic circles across all disciplines, we are so used to discussing with each other that we become stuck in our bubble of understanding, of acronyms and concepts. What we need is a giant pin, and we need more AI Pioneers to bridge the gap between theory and practice. More people willing to stop and ask questions. More translators of AI speak. More people who are comfortable in both worlds, who do not feel alienated by the academic circles and equally do not alienate practitioners, who, lets face it, are the real experts here. It is the practitioners who will be finding innovative ways to teach with and about the tools, and as with all previous ed-tech advances, it is the practitioners who will work out how to ‘hack’ the systems to fit their contexts. It is also the trainers who will be on the ground working with learners with poor digital literacy, trying to engage and enthuse them to not be automated out of a job.

I’d like to think that my work and that the projects Pontydysgu are involved with fit the gap nicely, providing introductory materials and creative ways to use AI tools, but I was reminded by a group of trainers I ran a workshop with recently of the need to slow down, take things back to basics. 

When I first started out in edtech I was the trainer-in-training, in one session billed as a ‘hands-on practical introduction to e-learning’ the instructor showed us how learners’ work could be exhibited on a website - it was new and exciting, the dawn of web2.0, everyone in the room was eager to learn how. But we were then left with the bamboozling task of “now build a website.”

In my workshop, I heard the words “now use that to build a bot” escape my mouth and realised that the student had truly become the master. 

We need to remember to put the scaffolding into place so as not to lose people over the edge, and that includes explaining ourselves clearly or at least signposting people who can. To quote Einstein, “If you can't explain it simply, you don't understand it well enough” If you are one of those people, a gap-bridger, a mediator, an educator and also an AI enthusiast I warmly invite you to join the AI Pioneers network. Use the contact form on our website to get in touch, join in the conversation on Mastodon (like Twitter but without the megalomania) or find us via LinkedIn.

 

Designing new social AI systems for education

UNESCO-UNEVOC/Ludi Yana under CC BY-NC-SA 4.0 IGO

Very much like the conclusion to Mike Sharples paper, 'Towards social generative AI for education: theory, practices and ethics':

Designing new social AI systems for education requires more than fine tuning existing language models for educational purposes. It requires building GAI to follow fundamental human rights, respect the expertise of teachers and care for the diversity and development of students. This work should be a partnership of experts in neural and symbolic AI working alongside experts in pedagogy and the science of learning, to design models founded on best principles of collaborative and conversational learning, engaging with teachers and education practitioners to test, critique and deploy them. The result could be a new online space for educational dialogue and exploration that merges human empathy and
experience with networked machine learning.

Context is key to how we implement AI in teaching and learning

Here is the latest in our series of interviews with educators about Artificial Intelligence.

About

Arunangsu Chatterjee is Professor of Digital Health and Education in the School of Medicine, Faculty of Medicine and Health at the University of Leeds. 

He is the Dean of Digital Transformation for the University, responsible for driving forward the delivery of the University’s Digital Transformation strategy, with a particular focus on leading change programmes and projects in digital education, digital research, and digital operations areas. He has academic responsibility for the development of relevant digital transformation programmes, securing academic buy-in to change initiatives and leading delivery of initiatives through project activity into business as usual and embedding of activity. He works closely with project teams, teams in professional services and academic Faculties and Schools to lead and support digital transformation initiatives. As Professor of Digital Health and Education he works with the UK National Health Service developing a health competency framework.

Digital Transformation and Infrastructure

Educational institutions need to upgrade their infrastructure for researching and implementing AI including the provision of high-performance CPUs / GPUs allowing access to high performance computing. Institutions also need to recruit software engineers. This is problematic due to high labour market demand for such engineers and the limited pay available through public institutions.

“It is critical that we improve the research infrastructure and use AI to join the dots.” Arunangsu is aware that the cost of developing AI in areas with very high data need such as in healthcare may be too much for universities and certainly for vocational and adult education. But he believes AI can be used to develop the infrastructure, for instance through developing business / research platforms and through analyzing grant applications.

Implementation and Adoption

Arunangsu says that AI has reinforced the need for interdisciplinary networks.

Institutions should develop an AI roadmap with a bottom up and challenge-based approach. Partnerships are important especially at a regional level. The roadmap should be a collective plan with opportunities for everyone to buy in – including from different economic sectors.

Teacher and student roles

Banning AI by educational institutions is not helpful. We cannot stop students using it. We need to educate graduates in using AI. There are three key competences:

  • Tool awareness and selection
  • Prompt engineering and
  • Tool chaining

We need training for staff as well as students in these competences.

Context is key to how we implement AI in teaching and learning. Course design needs to incorporate Explainable AI. We can use AI to mine curricula and find the gaps.

We can look at the context of course and curricula provision in a region and its social and economic role.

Ethical and Social Implications

Arunangsu is less optimistic about the impact of AI on jobs. While he is opposed to the proposed three month moratorium on AI development, he sees a need for a slowdown and moratorium on job losses from AI. In an educational context he sees a high risk that AI will replace learning and content designers. He believes employers should not be using AI to cut costs but rather to improve productivity and quality. “Intelligent automation needs care. We need a new welfare system and pay if we do not want to end with civil unrest. AI led job cuts also pose a big heath challenge.

Arunangsu drew attention to the newly released Leeds University Guidance to Staff on the use of Artificial Intelligence and in particular to the instruction not to use online AI detection tools. Instead, he said the University is looking at new forms of assessment.

What does it mean to live in a world with AI?

This is the third in our series of expert interviews about AI and education.

Linda Castaneda is Associate Professor Educational Technology at the Universidad de Murcia in Spain where she teaches preservice teachers and other professionals related to learning and undertakes continuing professional development activities for teachers and university professors.

She has recently led a research project for the European Joint Research Centre around the European Frameworks and tools for technology for teachers and trainers:

  • DigCompOrg) - supporting the development of digital capacities within educational organisations;
  • DigCompEdu – the European framework for supporting teachers and trainers in the use of technology for teaching and learning;
  • SELFIE and SELFIE Work Based Learning tools for the self-assessment of readiness of both organisation and individuals for using technology for teaching and learning. m

The study involved the analysis of the use of the Frameworks in Spain to support educational digital transformation, seen as one of the European Member States with a deeper and more extensive use of the frameworks and tools, to learn from its practical experience. The aim was to extract lessons on how to adapt, apply and use the frameworks and tools to digitally transform the Spanish educational systems and to increase the educators´ digital competences together with its educational organisations´ digital capacities.

This report highlights the importance of DigCompEdu as a framework that goes beyond the instrumental view of the digital transformation of education, helping institutions to anticipate, design and structure it. SELFIE is seen as a fundamental tool for school awareness and digital planning. Furthermore, the results consolidate the evidence of diverse approaches to digital transformation, especially considering the context of Spain, where the competence of education is at the regional level.

Linda is also involved in two projects devoted to Foster DIGCOMPEDU in University Teachers, nationally and internationally.

Graham Attwell interviewed Linda Castaneda in September 2003.

Competence Frameworks

“The major problem is how to engage participants in the process of educational digital transformation. Teachers' Training is not meaningful. Students are not motivated. Teachers and trainers complain about how useful the programme is. A reason may be that the Framework of Competences – DigCompEdu is being taken as a curriculum. But before it is useful and can be applied, its contents must be localized, the jargon needs to be translated into something close to the day-to-day experience of teachers – it needs to be based on their practice and to be important for them. At the moment many teachers are not appreciating how useful the Framework could for their area of education.

We need to translate the global framework into something which they can take ownership of. We must realise that different territories, as well as different areas of knowledge – e.g.Engineers and lawyers– have little in common. Translation is needed to make it meaningful with them.

Institutions and governments are backing the use of the Frameworks because they consider a way to be connected with a global –European– vision about the future of education, and also because they are supported by European Union money. It is all about politics and impact.

Even though frameworks are a clear approach on what to do and the perspective where to go, they come from the Anglo Saxon epistemic tradition about learning and education, which focuses on course and time-based learning. Education –with a wider approach– should include informal learning from outside the institution.

Additionally, DigCompEdu is mainly based on Blooms taxonomy, but it largely ignores the issue of metacognition and agency – the power to enact self-directed learning. It is not in the framework but is in discussion of the framework.

Digital transitions

Digital transition in education is too often focused thinking on budgets and governance, not on approaches to teaching and learning. We try to implement as many devices as possible but without challenging poor pedagogical approaches. We saw the problems in that approach in the Covid emergency. Everything about digital transformation is about teaching using a digital device or online. The most advanced technology most teachers –specially at the university– know is Turnitin. This needs a professional approach, teachers are professionals of education.

The Challenge of AI in education

The challenge of AI is what it means to day-to-day work, to the human everyday life. What does it mean to live in a world with AI.

Now we have a very restrictive curriculum. There is a growing debate over how to reshape courses. We need to rethink the purpose of education for each case, and the role of teachers in that new definition of education– e.g. what is the point of teachers especially in technical education –, it is crucial redefine human roles. We need to reconfigure the role of people and think in broader terms. For instance, why do we have a shortage of teachers, can we really replace them with AI?.

This, as everything regarding transformation of education and learning, requires a strategic approach. It is not the responsibility of some, but a systemic issue that ask everyone to have a critical perspective and to redefine the elements of the institutional structures.